
CONTENIDO DE LA FORMACIÓN

INDICE

- · Introducción a la Huella de Carbono en municipios
- · Origen de datos: El consumo eléctrico.
- Origen de datos: Los gases fluorados
- Origen de datos: Consumos de combustibles en vehículos
- · Origen de datos: Consumos de combustibles en edificios
- Obteniendo los datos: Energías renovables

INTRODUCCIÓN A LA HUELLA DE CARBONO EN MUNICIPIOS

INTRODUCCIÓN A LA HUELLA DE CARBONO EN MUNICIPIOS

ALCANCE 1:

Combustibles "quemados por nosotros"

Calderas, grupos electrógenos, vehículos...

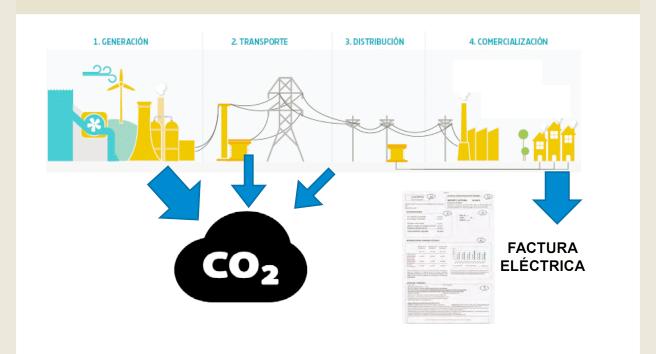
ALCANCE 2:

Combustibles "quemados por otros" para gastar la energía eléctrica que consumimos

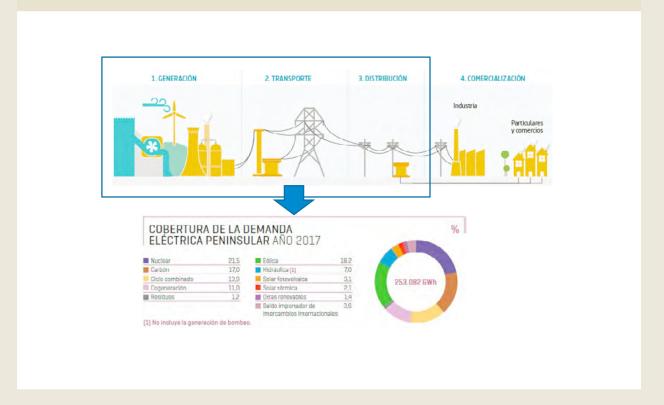
Suministro eléctrico

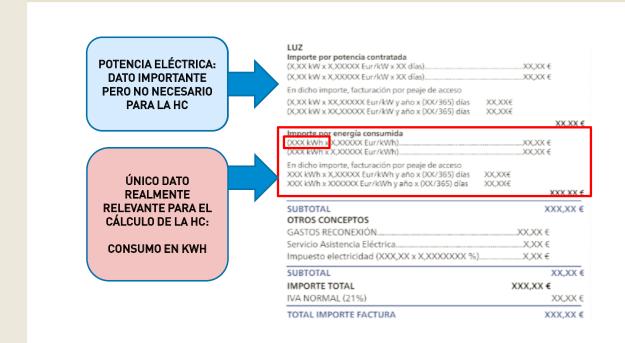
ALCANCE 3:

Combustibles "quemados por otros" para fabricar materiales o dar servicios que consumimos


Materiales, servicios, residuos producidos y transportes asociados a los mismos...

INTRODUCCIÓN A LA HUELLA DE CARBONO EN MUNICIPIOS




Transición Ecológica

Registro Ministerio

ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO

ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO

Consumos por periodos: P1, P2 y P3

Importe por peaje de acceso:	
Consumo P1 363 kWh x 0,062012 Eur/kWh	22,51 €
	0,90 €
Importe por coste de la energía: Consumo P1	
Consumo P3	31,21 €
406 kWh x 0,060791 Eur/kWh	24,68 €

• P1: Punta

• P2: Llano

P3: Valle

No tienen a priori incidencia ambiental, pero sí económica.

Periodos P1, P2 y P3

Pe	Península Ibérica			
	Invierno	Verano		
P1 - Punta	18 - 22 h.	11 - 15 h.		
P2 - Llano	8 - 18 h.	8 - 11 h.		
	22 - 24 h.	15 - 24 h.		
P3 - Valle	0 - 8 h.	0 - 8 h.		

	Invierno	Verano			
P1 - Punta	18 - 22 h.	18- 22 h.			
P2 - Hano	8 - 18 h.	8 -18 h.			
PZ - LIAIIO	22 - 24 h.	22 - 24 h.			
P3 - Valle	0 - 8 h.	0 - 8 h.			

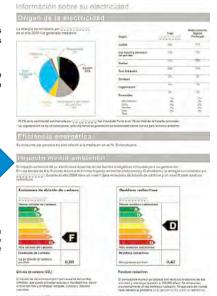
	Invierno	Verano
P1 - Punta	18 - 22 h.	11 - 15 h.
P2 - Llano	8 - 18 h.	8 - 11 h.
	22 - 24 h.	15 - 24 h.
P3 - Valle	0 - 8 h.	0 - 8 h.

	Invierno	Verano		
P1 - Punta	19 - 23 h.	11 - 15 h.		
	0-1 h.	9 - 11 h.		
P2 - Llano	9 - 19 h.	15 - 24 h.		
	23 - 24 h.	0 - 1 h.		
P3 - Valle	1- 9 h.	1 - 9 h.		

ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO

Tarifas de acceso de baja tensión

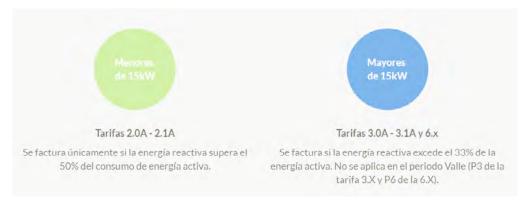
Tarifa de acceso	Descripción tarifa de acceso	Potencia contratada
Tarifa 2.0 A	Tarifa simple	
Tarifa 2.0 DHA	Tarifa simple con dos periodos de discriminación horaria	Hasta 10kW
Tarifa 2.0 DHS	Tarifa simple con tres periodos de discriminación horaria	
Tarifa 2.1 A	Tarifa simple	
Tarifa 2.1 DHA	Tarifa simple con dos periodos de discriminación horaria	Entre 10 y 15kW
Tarifa 2.1 DHS	Tarifa simple con tres periodos de discriminación horaria	
Tarifa 3.0 A	Tarifa con tres periodos de discriminación horaria	Más de 15kW


La Factura contiene información sobre las emisiones y residuos nucleares producidos por la energía suministrada.

El dato final de conversión nos viene marcado por la Calculadora de Huella de Carbono y el año de cálculo.

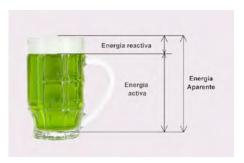
Resolución de 23 de mayo de 2014, de la Dirección General de Política Energética y Minas, por la que se establece el contenido mínimo y el modelo de factura de electricidad.

Circular 1/2008, de 7 de febrero, de la Comisión Nacional de Energia, de información al consumidor sobre el origen de la electricidad consumida y su impacto sobre el medio ambiente.



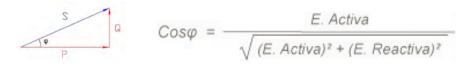
ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO

Energía reactiva


Energía facturada	P 256 kWh x 0,161533 €/kWh	41
	LL 1.259 kWh x 0,132984 €/kWh	167
	V 145 kWh x 0,100193 €/kWh	14
Total 1.660 kWh hasta 01/07/2015		223,31 €
Energía reactiva	P1 206,52 kVArh x 0,062332 €/kVArh	12
	P2 1.094,53 kVArh x 0,062332 €/kVArh	68
Total energía reactiva hasta 01/07/2015		81,09 €
Descuento sobre consumo 25 %	25% s/223,31 €	-55
Impuesto sobre electricidad	5,1126963296 s/671,06 €	34
TOTAL ENERGÍA		705
SERVICIOS Y OTROS CONCEPTOS		
Alquiler equipos medida	1 mes x 13,98 €/mes	13
TOTAL SERVICIOS Y OTROS CONCEPTOS		13
IMPORTE TOTAL		719,
IVA	21% s/719,35 €	151,
TOTAL IMPORTE FACTURA		870,4

El coste de la energía reactiva sólo se incluye en la factura cuando el consumo de energía reactiva es significativo (artículo 9.3 del RD 1164/2001, de 26 de octubre) y se aplica en función de la potencia contratada:


ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO


- ✓ No se consume ni sirve para calentar.
- ✓ Se mide en kVArh (kilo voltio-amperio reactivo hora)
- ✓ Se asocia a todos los aparatos que para su funcionamiento precisen de una bobina (es decir aquellos que funcionan con motores o transformadores) alimentados en corriente alterna

Energía reactiva

COSφ: Es el coseno del ángulo φ que forman la potencia activa (P) y la aparente (S)

ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO

1) Condensadores Fijos

Equipos con un valor fijo de kVAr.

Son ideales para la compensación individual de motores de gran potencia, de los transformadores o de una propia instalación en caso de que el consumo de reactiva sea muy constante.

<u>2) Baterías de Condensadores</u> <u>Automáticos.</u>

Equipos que proporcionan el valor necesario de kVAr para mantener el cosΦ de la instalación cercano a un valor objetivo definido. Se adaptan a las variaciones de consumo de reactiva de una instalación

Compensación individual: A cada aparato eléctrico con componentes bobinados se le instala el condensador necesario.

Compensación conjunta: A aparatos eléctricos con la misma potencia y mismas horas de funcionamiento se les instala un condensador común.

Compensación central: Compensación de toda la instalación a través de una batería automática de condensadores, cuyo funcionamiento se regula automáticamente en función de la energía reactiva que es necesario compensar en cada momento.

ORIGEN DE DATOS: EL CONSUMO ELÉCTRICO

Los gases fluorados comenzaron a usarse a principios de los 90 para sustituir a las sustancias que agotan la capa de ozono. Los gases fluorados son empleados, entre otras aplicaciones, como refrigerantes, agentes extintores de incendios, disolventes y para la fabricación de espumas aislantes.

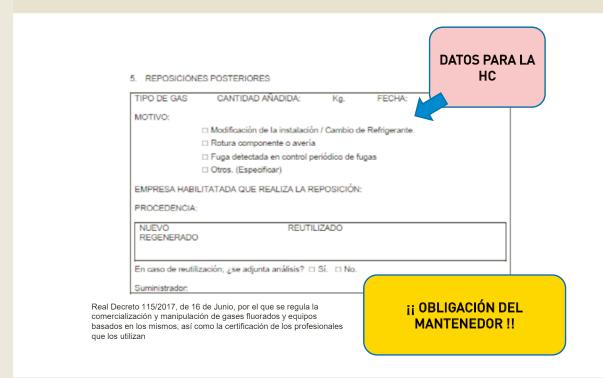
(when compared to CO ₂)	
Greenhouse Gas	GWP After 20 Years	GWP After 100 Years
Carbon Dioxide	1	1
Methane	72	25
Nitrous Oxide	310	298
HFC-23	12000	14800
HFC-125	6350	3500
HFC-134a	3830	1430
HFC-143a	5890	4470
CF ₄	5210	7390
C ₂ F ₆	8630	12200
SF ₆	16300	22800

ORIGEN DE DATOS: GASES FLUORADOS

Registros de mantenimiento

Control de Fugas Reglamento (UE) 517/2014 del Parlamento Europeo y del Consejo de 16 de abril de 2014

2014						
	Regulación 2006		Regulación 2014			
Requisito	Umbral en KG	Umbral en toneladas de CO _{2EQ}	Equivalentes en kg para el HFC R-404A	Equivalentes en kg para el HFC R-134a		
Control de fugas anual	3 kg	5 toneladas de CO _{2EQ}	1.3 kg	3.5kg		
Control de fugas semestral	30 kg	50 toneladas de CO _{2EQ}	12.7 kg	35 kg		
Detector automático de fugas	300 kg	500 toneladas de CO _{2EQ}	127 kg	350 kg		
Registro de fugas	3 kg	5 toneladas de CO _{2EQ}	1.3 kg	3.5 kg		


El control no sólo a aplica a "aires acondicionados"

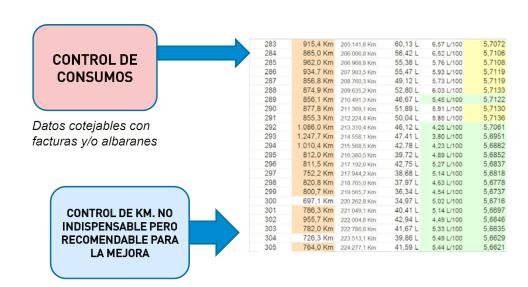
- · Aparatos fijos de refrigeración
- · Aparatos fijos de aire acondicionado;
- · Bombas de calor fijas
- Aparatos fijos de protección contra incendios
- Unidades de refrigeración de camiones y remolques frigoríficos
- · Aparamenta eléctrica
- · Ciclos Rankine con fluido orgánico

ORIGEN DE DATOS: GASES FLUORADOS

				-	REG	ISTRO CONTI	ROLES DE FUGAS	
arga de re			odicidad del control de fu consable del mantenimier		bre,	NIF, nº registr	industrial, teléfono)	¿Cuenta con sistema detector de fugas?
	NIF	F	Procedimiento control			L ^S	Se detectan fugas?	
Fecha	Personal realiza el control	Código	Comentarios	NO	SI	Localización	Acción	Comentarios y firma
				+				
				1				
							ÓN DEL	

ORIGEN DE DATOS: GASES FLUORADOS

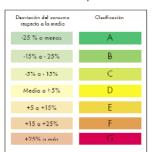
FACTURAS - IMPUESTO SOBRE GASES FLUORADOS: (Ley 16/2013)


El pago recaerá sobre quien compre estos gases en fase única (es decir, no repercute en toda la cadena de distribución sino que se paga de una sola vez)

En los siguientes casos, la aplicación del impuesto quedará exenta:

Los gases fluorados que dispongan de un PCA inferior o igual a 150 Los gases dedicados a la exportación a terceros países Primera carga tanto de equipos nuevos como de nuevas instalaciones

Esto lo que quiere decir es que el consumidor final, está exento de pagar el impuesto al comprar un nuevo equipo de aire acondicionado PERO no quedará exento y por lo tanto, tendrá que abonar el importe íntegro del impuesto, cuando por un fallo se produzca una fuga de gas y haya que realizar una recarga.


ORIGEN DE DATOS: COMBUSTIBLES EN VEHÍCULOS

Información sobre el vehículo en la compra

En los puntos de venta se deberán exhibir, obligatoriamente para cada marca, y en un cartel informativo o dispositivo de visualización, con una lista de los datos oficiales de consumo de carburante y de emisiones de CO2 para todos los modelos de turismo nuevos presentados en el punto de venta.

Etiqueta sobre consumo de combustible y emisiones de CO2 de forma claramente visible en cada modelo de turismo nuevo.

Complementariamente, con carácter voluntario, se colocará una etiqueta que incluirá además la clasificación por consumo comparativo del coche.

Real Decreto 837/2002, de 2 de agosto

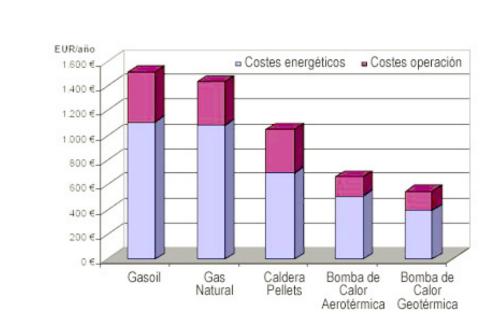
ORIGEN DE DATOS: COMBUSTIBLES EN VEHÍCULOS

Origen de datos: Los combustibles en vehículos

BASE DE DATOS DE VEHÍCULOS NUEVOS IDAE

http://coches.idae.es/portal/BaseDatos/BaseDatos.aspx

Modelo	Clasificación Energética	Consumo	(I/100Km)* Máximo	Emisiones Minimo	(gCO ₂ /km)* Máximo	Compara
Alxam eAIXAM SENSATION City Pack	Sin Clasificación Energética	0	0	0	0	
Aixam eAIXAM SENSATION City Premium	Sim Clasificación Energética	0	0	0	0	
Aixam eAIXAM SENSATION Coupé GTI	Sir Clasificación Energética	0	0	0	0	
Alxam eAIXAM SENSATION Coupé Premium	Sin Clasticación Energética	0	0	0	0	
Aixam eAixam VISION City Pack	Sin Clasificación Energética	0	0	0	0	
Alxam eAlxam VISION Coupé Premium	Sin Classificación Energética	0	0	0	0	
Alfa Romeo 159 1.8 TBi 200CV Sport Plus	D	8,1	8,1	189	189	
Alfa Romeo 159 1.9 JTDM 8V 6M 120CV Sport	C	5,2	5,2	138	138	
Alfa Romeo 159 1.9 JTDM 8V 6M 120CV SW Sport	C>	5,3	5,3	140	140	
Alfa Romeo 159 2.0 JTDM 136CV Sport Plus	0	5,1	5,1	134	134	
Alfa Romeo 159 2.0 JTDM 136CV SW Sport Plus	C)	5,2	5,2	137	137	
Alfa Romeo 159 2.0 JTDM 170CV Sport ECO	C	5,1	5,1	136	136	-
Alfa Romeo 159 2.0 JTDM 170CV Sport Plus	C	5,4	5,4	142	142	
Alfa Romeo 159 2.0 JTDM 170CV Sport Plus ECO	C)	5,1	5,1	136	136	0
Alfa Romeo 159 2.0 JTDM 170CV SW Sport Plus gina 1 de 1363	C)	5,5	5,5	145	145	


ORIGEN DE DATOS: COMBUSTIBLES EN VEHÍCULOS

Fomento de la movilidad sostenible

Modo de transporte	Kg de CO₂ por kilómetro y pasajero
Pie	0
Bicicleta	0
Tranvía	0,042
Metro	0,06
Tren	0,065
Autobús	0,069
Ciclomotor	0,073
Motocicleta	0,094
Coche pequeño	0,11
Coche mediano	0,133
Coche grande	0,183

Fuente: "2008 Guidelines to Defra's GHG Conversion Factors: Methodology Paper for Transport Emission Factors." Departamento de Medio Ambiente del Reino Unido.

ORIGEN DE DATOS: COMBUSTIBLES EN EDIFICIOS

ORIGEN DE DATOS: COMBUSTIBLES EN EDIFICIOS

DATOS PARA LA

HC

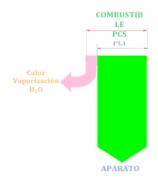
FACTURAS DE GAS

CONSUMO GAS

 Lectura real
 (16/11/2015)
 34.394 m³

 Lectura real
 (14/09/2015)
 -34.127 m³

 Consumo medido
 267 m³


 Factor conv. poder calorífico
 11,4860 kWh/m³

 Total
 3.067 kWh

Generalmente el factor de conversión para el gas natural suele expresarse en PCS

El factor de conversión es variable al depender de aspectos como la presión de suministro

ORIGEN DE DATOS: COMBUSTIBLES EN EDIFICIOS

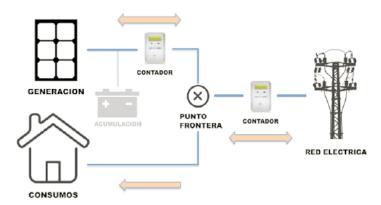
El poder calorífico de un gas es la cantidad de calor desprendido en la combustión completa de una unidad de volumen de dicho gas en condiciones normales de presión y temperatura (0 °C y 1 atm).

El PCS del gas nos indica el calor total obtenido en su combustión completa aunque no todo ese calor es directamente aprovechable en el aparato de consumo.

El PCI nos indica el calor que realmente podemos utilizar ya que una parte del calor total producido se emplea en mantener en estado vapor el agua que forma parte de los productos de la combustión.

Las nuevas calderas de condensación permiten aprovechar este calor de vaporización del agua ya que ésta se enfría y condensa cediendo calor al aparato.

ORIGEN DE DATOS: COMBUSTIBLES EN EDIFICIOS

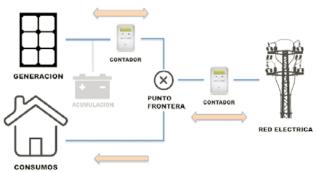

ENERGÍAS RENOVABLES

BIOMASA = 0 Huella de carbono

	(k)/kg)	(kWh/kg)	b.h. (%)
Pélets	17.000 - 19.000	4.7 - 5.3	< 15
Astillas	10.000 - 16.000	2,8 - 4,4	< 40
Hueso de aceituna	18.000 - 19.000	5,0-5,3	7 - 12
Cáscara de frutos secos	16.000 - 19.000	4,4-5,3	8 - 15
Leña	14.400 - 16.200	4,0 - 4,5	< 20
Briquetas	17.000 - 19.000	4,7 - 5,3	< 20

ORIGEN DE DATOS: ENERGÍAS RENOVABLES

Fotovoltaica



Modalidad Tipo 1

Las instalaciones tipo 1, son aquellas instalaciones pequeñas que no pueden vender el sobrante de la energía producida.

ORIGEN DE DATOS: ENERGÍAS RENOVABLES

Fotovoltaica

Modalidad Tipo 2

Las instalaciones tipo 2 son aquellas en las que el titular de la instalación se convierte además en productor de energía vendiendo los excedente

TRANSPASO DE DATOS A LA CALCULADORA

- Convertir unidades.
- Agregar los datos por sedes / instalaciones (Unidades funcionales)
- Cumplimentar el cálculo

INTERPRETANDO LOS RESULTADOS

Estrategias de reducción

Estrategias de compensación

INTERPRETANDO LOS RESULTADOS

Estrategias de reducción

PRIORIZACIÓN: FUENTES DE MAYOR EMISIÓN

CONTROL DE OPERACIONES

BÚSQUEDA DE ALTERNATIVAS

FORMACIÓN -SENSIBILIZACIÓN

INTERPRETANDO LOS RESULTADOS

AUTONOMÍA ENERGÉTICA «Alimentar a las dependencias con energía renovable solar, fotovoltaica, eólica u otra»

EFICIENCIA ENERGÉTICA «Uso de tecnologías eficientes en consumo eléctrico y de combustible, por ejemplo: uso de ampolletas de bajo consumo»

REGULACIÓN DEL CONSUMO «Controlar tiempos y horas de uso de la electricidad y los combustibles en las dependencias y en el espacio público»

EDUCACIÓN A LA COMUNIDAD «Concientizar respecto a la eficiencia energética, las energías renovables y el cambio climático»

PLANIFICACIÓN ENERGÉTICA «Desarrollar un plan de eficiencia energética y energías renovables a nivel comunal»

INTERPRETANDO LOS RESULTADOS

Contratación pública

Elaboración y difusión de modelos tipo de pliegos particulares

que incluyan exigencias de eficiencia energética.

En la contratación de obras de primer establecimiento incorporar criterios de eficiencia energética

Exigir asimismo la redacción y entrega de un manual del usuario

que incluya recomendaciones de uso energéticamente eficiente.

En la contratación de obras de reforma, reparación, conservación

o demolición incorporar criterios de eficiencia energética.

INTERPRETANDO LOS RESULTADOS

En contratos de suministro incorporar criterios de eficiencia energética, especialmente en la adquisición de:

Equipamiento consumidor o transformador de energía Equipos o sistemas para el tratamiento de la información Vehículos y de sus combustibles Compra de energía verde

Incluir como exigencia, en los pliegos de prescripciones técnicas particulares, que los equipos o vehículos ofertados posean la clase de eficiencia energética más elevada de las disponibles en el mercado.

En contratos de servicios de mantenimiento de los edificios incorporar criterios y requisitos de eficiencia energética (mantenimiento preventivo y control de consumos).

INTERPRETANDO LOS RESULTADOS

En los edificios construidos, realización de un inventario de todos los elementos, equipos e **instalaciones** consumidoras de energía y hacer una recopilación de datos de **potencia instalada**.

Realización de **auditorias energéticas** globales, a los edificios de la Administración

Las actuaciones a emprender se centrarían principalmente en:

- Difusión de pautas para el uso energéticamente eficiente de los edificios
- Aislamiento térmico de los edificios
- Instalaciones térmicas
- -Instalaciones de iluminación
- Utilización de energía solar térmica y fotovoltaica y de microgeneración

INTERPRETANDO LOS RESULTADOS

Programa de funcionamiento de las instalaciones para cada edificio para dar el servicio demandado con el mínimo consumo energético en función de los distintos regímenes de ocupación o temporadas climáticas:

- Hora de puesta en marcha y parada de la instalación.
- Orden de puesta en marcha y parada de los equipos.
- Programa de paradas intermedias del conjunto o de parte de equipos.
- Programa y régimen especial para los fines de semana y para condiciones especiales de uso del edificio o de condiciones exteriores excepcionales.

